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It is shown that a solution exists to the problem of the equilibrium of a symmetrically 
loaded membrane with an unstressed contour. The proof uses the method of Chaplygin 
and at the same time a numerical method of solution is derived. 

Let us consider the problem of the equilibrium of a circular, symmetrically loaded 

membrane with an unstressed contour [I] 

Here the function u corresponds to the radial stress and q (p) is the intensity of 

normal loading. In the case when cp (p) satisfies the condition tp (1) =z 0, the existence 

theorem was formulated without proof in [2], and in the case of the load Cp (P) = 4P2 

(q = const) uniformly distributed over the surface the existence was proved in 131. 

Chaplygin’s method [4 and 51 enables us to derive an effective method for constructing 

the solution (see formulas (5) to (E),below), while proving its existence. It should be 
noted that in constrast to the previously employed method of power series [l], the function 
up (P), needs not to be analytic, and this allows us to analyse a membrane under the action 
of discontinuous loads. 

Theorem. Suppose that the function tp (P) is piecewise continuous. Then the problem 
(1) and (2) has a continuous solution and the following inequalities hold for the derivatives 
u’and v”: 

I v' (PI I< ml 11 - PI-*“> 1 v” (p) j < m2 fi - p)-*” (31 

(here ad in the following mi are the constants independent of P). 

Proof. The problem (1) and (2) is equivalent to the integral equation 
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(4) 

We can show that the solution of the problem will he the limit of a sequence of functions 

iv,) defined by the relations 
(5) 

V 
Ml 

=D,-C56n (n-l, 2,. . .) 

(6) 

(7) 

a, zzz I.6, - -!E- 
2PV,2 ’ (8) 

The quantity M is finite, since from the condition that IV (P) 1 < m3p2, and from (4) 

and (6) it follows that 

CPU - p)“’ > v1 > m,p (1 - PP’ 
if Cp (P) * 0 for 0 < p < 2. 

(me > 0) (9) 

Indeed, suppose we find an interval fo, bj C [O, $1, in which min 9 a / P4 = ml > 0, 

and suppose, for instance, that 6 = 1. Then from (4) and (6) we have 

From this we easily obtain 

I m5p (1 - a)‘ls (pdo) 
sQ>J(p)= 

r%p (1 - P>“” [+-(~y]h+P@-P)% (p&a) 

From (8) and (9) we find that 

fP2 
ai=Lq - -- 

@IV- C2p2 (1 - p)“] 
2pvg - 2capa (1 - p)‘kQ 

60 

(10) 

(11) 

Next we shall prove that 6, (P) < 0. To do so we multiply (7) with I) = 1 by 6,) and 
integrate it with respect to p from 0 to 1. As a result we obtain 

1 1 

dp+$ ydp+&i s 

l 61” 

s 
- 

s 
%&dp 

0 OP 
o(l _p)sdp= 

0 

If we estimate the left-hand side of (12) using the inequality 

(12) 

(13) 
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j a$Wp > 0 
0 

(14) 

If we now suppose that 8, (p) assumes positive values, we can find an interval 

[El, %*I c UJ, 11, such that dt (p) >/ 0 rfor P E I!&, ES] and 6, (&I = - 6 (&) = 0. nut 

this leads to a contradiction since analogously to (14) we obtain 

We shall now introduce the following function spaces: 
(I) consisting of functions which satisfy conditions (2) and have a finite norm 

05) 

(2) consisting of functions with the finite norm 

(16) 

(3) obtained by the closure of the set of smooth functions given within (0, l], by the 

Using the inequality ii 8 ii ~~,o Q 2118 I!H~, we obtain from (7) 

II 61 /IL,, p Q & II a1 llLSe 

We can show that CL* ,<O. We have that 

(18) 

‘pa va a$=Lva-----_-- ‘pa 
2PVa” 2PV18 2p (vl-661)2+ (1 - py 

MIj 
1 

By mesns of Lagrange’s formula we rewrite (19) in the form 

(19) 

(20) 

That &1 cannot be positive follows from (20) on the basis of the definition (8) of hf 

and the inequalities vr >/ 0 and & < 0. Furthermore, from (20) it follows that 

li%llL;G WI~~II~, - 

From (7) with n = 2, we obtain 

II fh II%, p G & II al lIL,a (21) 

Similarly we find that 

whence for any k > 1 we obtain 
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We shall now prove that the series v1 - (8, $ a2 -f 6, -1 . . .), and therefore the 

sequence Vk, converge uniformly on [0, 11 t o some function u. From (7) we obtain the 

equation 

6, = L-hk - ML- 
(24) 

Let us now evaluate L-rak By using the Buniakovskii inequality, we obtain 

I t 

$ [C 

1 
tr3dt b c1 ” 2Jz dz I 

% 
(25) 

If we apply the inequality T< t to the in:er integral and evaluate the resulting integral, 

we find from (25) that 

1 

I Lelak I f +j- P II ak IlL* s t-‘/* (I - t)+ dt < n*G 11 ah \\I_* (26) 

Similarly 
P 

Now, from (24). (26) and (27) we obtain 

(27) 

(28) 

which confirms the convergence of the sequence vk to vu. It remains to show that u is the 

solution of (4). The following relation follows from (8): 

(29) 

The last term in (29) tends to zero as k + 00 on the basis of (26). Also, we note that 

mlop U - p)% > v > vk > vl > m# (4 - 9)“’ (30) 

The right-hand side of this inequality has already been proved and the left-hand 

side follows from the fact that 

w>v for Lm-&>O 

We can express w in the form 

uz = [O/z max@ (p)Pp (4 - P)“” (0 < P d 4) 

From (30) we easily see that 

Now, from (31), analogously to (26). we deduce 

L-10!- 
{2&z 

(31) 

(32) 
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i.e. Eqaation (4) is obtained from (29) in the limit as k + 00. 

The estimates (3) for u’and v”can be found from (4) by the use of (30). The theorem 
is thus proved. 

Suppose cp (1) # 0. Then, for the function a = dw/dp where w is the deflection, we 
have 

u~-~=o((l-_p)-“‘) 

Mechanically, this means that in this case equilibrium of the membrane is not possible. 
It was therefore natural to consider the case [2] when the resultant of the system of forces 
acting on the membrane was zero, i.e. rp (1) = 0. 

With this condition the solution proves to be smoother and has two continuous deriv- 

atives. The appropriate theorem was formulated in [2]. Its proof coincides almost exactly 
with the proof given above. The difference lies in the norms introduced by the formulas 

(15) and (16) where the weight(l- p’) and (1 - P)-~ should be taken as (1 - p) and 

(1 - p)-’ respectively. 
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